Fast Iterative Solution of Reaction-Diffusion Control Problems Arising from Chemical Processes
نویسندگان
چکیده
PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves result from chemical processes. Important aspects in our solvers are saddle point theory, mass matrix representation and effective Schur complement approximation, as well as the outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs.
منابع مشابه
Numerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کاملA discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms
In this paper, we study the numerical solution of optimal control problems governed by a system of convection diffusion PDEs with nonlinear reaction terms, arising from chemical processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term is used for discretization. Residual-based error estimators are used for the state, the adjoint and the control var...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملA note on the numerical treatment of the k-epsilon turbulence model
Numerical solution of the equations arising from the turbulence model has difficulties inherent to nonlinear convection-reaction-diffusion equations with strong reaction terms, resulting in that numerical schemes easily become unstable. We present a formulation that stresses on the robustness of the solution method, tackling common problems that produce instability. The main contribution concer...
متن کاملa New Approximate Solution Technique (Quantized Method) for Simultaneous Gas Solid Reactions
Simultaneous reactions between solids and gases are very important in the chemical and metallurgical processes. In the modeling, the chemical reaction and diffusion of gases must be considered. Therefore, a set of coupled partial differential equations is found. When the kinetic is a function of solid concentration, there is not any analytical solution for these equations. Therefore, numerical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013